Capital market assumptions - March 2022
Ninety One’s Capital Market Assumptions framework focuses on the key drivers of long-term performance. We do this to better understand possible future returns, enriching discussions with our clients.
Ninety One, in a Thematic Macro session in May, held a horizon-scanning exercise about the potential impact of AI. This session was prepared on a cross-capability basis to maximise input and collaboration. We lay out here the talking points which fashion Ninety One’s current thinking on AI and investing. Given the speed of AI development, this article is inherently incomplete. Its success is more a function of whether we are asking the right questions than whether we have the right answers. Needless to say, we expect our thinking to rapidly evolve.
AI is a broad field of study. This paper focuses on AI broadly as programmes or applications that can produce an output that is very human-like, conventionally known as generative AI. The intelligence of these systems lies not only in producing human-like outputs but also using machine learning techniques for continuous training and improvement without needing human input.
The novelty of ChatGPT has rocketed AI to the top of research agendas, but, as the saying goes, it takes a long time to become an overnight success. It’s 73 years since Alan Turing invented the ‘Turing test’ which set an early benchmark for AI to aspire to: display intelligent behaviour that is indistinguishable from a human’s.
Stepping back, AI has seen a number of evolutions: from early enthusiasm in the 1950s as a general problem solver that could approach puzzles in a similar way to humans i.e., via an order of subgoals, to the ELIZA model in the ‘60s that could create sentences that sounded very human-like. Then in the ‘70s knowledge based systems proved successful compared to junior doctors in medical examinations. In the ‘80s and ‘90s, IBM’s Deep Blue grabbed headlines when it beat Gary Kasparov in chess.
Then there was a so-called ‘AI winter’ for the next couple of decades as researchers struggled to make significant breakthroughs. This chart from Harvard shows the timeline: one conclusion you could draw is that historically AI has made progress, but in leaps, and with frequent periods where optimism has given way to pessimism. In other words, progress wasn’t inexorable in the past and we should not assume it is inexorable today.
Figure 1: Artificial intelligence timeline
Source: Harvard University. Please note this has been redrawn by Ninety One.
ChatGPT is an advanced form of artificial narrow intelligence. Commonly referred to as ‘generative AI’, it represents a step change in capabilities within the category of narrow artificial intelligence. Generative AI can take a given set of inputs and produce sophisticated outputs, not just in text but also as images, audio and synthetic data. This is starting to push the boundaries between narrow and general intelligence. But for now, artificial general intelligence remains a theoretical objective.